A Combined Preconditioning Strategy for Nonsymmetric Systems

Handle URI:
http://hdl.handle.net/10754/555651
Title:
A Combined Preconditioning Strategy for Nonsymmetric Systems
Authors:
de Dios, B. Ayuso; Barker, A. T.; Vassilevski, P. S.
Abstract:
We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
A Combined Preconditioning Strategy for Nonsymmetric Systems 2014, 36 (6):A2533 SIAM Journal on Scientific Computing
Journal:
SIAM Journal on Scientific Computing
Issue Date:
Jan-2014
DOI:
10.1137/120888946
Type:
Article
ISSN:
1064-8275; 1095-7197
Additional Links:
http://epubs.siam.org/doi/abs/10.1137/120888946; http://arxiv.org/abs/1208.4544
Appears in Collections:
Articles; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorde Dios, B. Ayusoen
dc.contributor.authorBarker, A. T.en
dc.contributor.authorVassilevski, P. S.en
dc.date.accessioned2015-05-25T08:33:54Zen
dc.date.available2015-05-25T08:33:54Zen
dc.date.issued2014-01en
dc.identifier.citationA Combined Preconditioning Strategy for Nonsymmetric Systems 2014, 36 (6):A2533 SIAM Journal on Scientific Computingen
dc.identifier.issn1064-8275en
dc.identifier.issn1095-7197en
dc.identifier.doi10.1137/120888946en
dc.identifier.urihttp://hdl.handle.net/10754/555651en
dc.description.abstractWe present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.en
dc.relation.urlhttp://epubs.siam.org/doi/abs/10.1137/120888946en
dc.relation.urlhttp://arxiv.org/abs/1208.4544en
dc.rightsArchived with thanks to SIAM Journal on Scientific Computingen
dc.subjectpreconditioningen
dc.subjectnonsymmetric matricesen
dc.subjectnormal matrix formen
dc.subjectadditive Schwarz methoden
dc.titleA Combined Preconditioning Strategy for Nonsymmetric Systemsen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalSIAM Journal on Scientific Computingen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionDipartimento di Matematica, Universit` a di Bologna, Piazza di Porta San Donato 5, I-40127 Bologna, Italyen
dc.contributor.institutionCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550en
dc.identifier.arxividarXiv:1208.4544en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.