Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

Handle URI:
http://hdl.handle.net/10754/552791
Title:
Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition
Authors:
Hinkle, C. L.; Galatage, R. V.; Chapman, R. A.; Vogel, E. M.; Alshareef, Husam N. ( 0000-0001-5029-2142 ) ; Freeman, C.; Christensen, M.; Wimmer, E.; Niimi, H.; Li-Fatou, A.; Shaw, J. B.; Chambers, J. J.
Abstract:
Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Citation:
Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition 2012, 100 (15):153501 Applied Physics Letters
Publisher:
AIP Publishing
Journal:
Applied Physics Letters
Issue Date:
9-Apr-2012
DOI:
10.1063/1.3701165
Type:
Article
ISSN:
00036951
Additional Links:
http://scitation.aip.org/content/aip/journal/apl/100/15/10.1063/1.3701165
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorHinkle, C. L.en
dc.contributor.authorGalatage, R. V.en
dc.contributor.authorChapman, R. A.en
dc.contributor.authorVogel, E. M.en
dc.contributor.authorAlshareef, Husam N.en
dc.contributor.authorFreeman, C.en
dc.contributor.authorChristensen, M.en
dc.contributor.authorWimmer, E.en
dc.contributor.authorNiimi, H.en
dc.contributor.authorLi-Fatou, A.en
dc.contributor.authorShaw, J. B.en
dc.contributor.authorChambers, J. J.en
dc.date.accessioned2015-05-14T08:26:27Zen
dc.date.available2015-05-14T08:26:27Zen
dc.date.issued2012-04-09en
dc.identifier.citationGate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition 2012, 100 (15):153501 Applied Physics Lettersen
dc.identifier.issn00036951en
dc.identifier.doi10.1063/1.3701165en
dc.identifier.urihttp://hdl.handle.net/10754/552791en
dc.description.abstractSilicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.en
dc.publisherAIP Publishingen
dc.relation.urlhttp://scitation.aip.org/content/aip/journal/apl/100/15/10.1063/1.3701165en
dc.rightsArchived with thanks to Applied Physics Lettersen
dc.titleGate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface compositionen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalApplied Physics Lettersen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionDepartment of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USAen
dc.contributor.institutionAdvanced CMOS, Texas Instruments, Incorporated, Dallas, Texas 75243, USAen
dc.contributor.institutionMaterials Design, Incorporated, Angel Fire, New Mexico 87710, USAen
kaust.authorAlshareef, Husam N.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.