The transition of dynamic rupture styles in elastic media under velocity-weakening friction

Handle URI:
http://hdl.handle.net/10754/552173
Title:
The transition of dynamic rupture styles in elastic media under velocity-weakening friction
Authors:
Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, Paul Martin ( 0000-0002-9744-4964 )
Abstract:
Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Citation:
The transition of dynamic rupture styles in elastic media under velocity-weakening friction 2012, 117 (B9):n/a Journal of Geophysical Research: Solid Earth
Publisher:
Wiley-Blackwell
Journal:
Journal of Geophysical Research: Solid Earth
Issue Date:
Sep-2012
DOI:
10.1029/2012JB009468
Type:
Article
ISSN:
01480227
Additional Links:
http://doi.wiley.com/10.1029/2012JB009468
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorGabriel, A.-A.en
dc.contributor.authorAmpuero, J.-P.en
dc.contributor.authorDalguer, L. A.en
dc.contributor.authorMai, Paul Martinen
dc.date.accessioned2015-05-04T16:37:20Zen
dc.date.available2015-05-04T16:37:20Zen
dc.date.issued2012-09en
dc.identifier.citationThe transition of dynamic rupture styles in elastic media under velocity-weakening friction 2012, 117 (B9):n/a Journal of Geophysical Research: Solid Earthen
dc.identifier.issn01480227en
dc.identifier.doi10.1029/2012JB009468en
dc.identifier.urihttp://hdl.handle.net/10754/552173en
dc.description.abstractAlthough kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://doi.wiley.com/10.1029/2012JB009468en
dc.rightsArchived with thanks to Journal of Geophysical Research: Solid Earthen
dc.titleThe transition of dynamic rupture styles in elastic media under velocity-weakening frictionen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalJournal of Geophysical Research: Solid Earthen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionSwiss Seismological Service, Swiss Federal Institute of Technology Zurich, Zurich, Switzerlanden
dc.contributor.institutionSeismological Laboratory, California Institute of Technology, Pasadena, California, USAen
kaust.authorMai, Paul Martinen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.