Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

Handle URI:
http://hdl.handle.net/10754/550221
Title:
Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice
Authors:
Hairmansis, Aris; Berger, Bettina; Tester, Mark A. ( 0000-0002-5085-8801 ) ; Roy, Stuart
Abstract:
Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion-independent stress and shoot ion dependent stress) makes it a useful tool for genetic and physiological studies to elucidate processes that contribute to salinity tolerance in rice. The technique has the potential for identifying the genetic basis of these mechanisms and assisting in pyramiding different tolerance mechanisms into breeding lines.
KAUST Department:
Center for Desert Agriculture; Biological and Environmental Sciences and Engineering (BESE) Division
Citation:
Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice 2014, 7 (1):16 Rice
Publisher:
Springer Nature
Journal:
Rice
Issue Date:
14-Aug-2014
DOI:
10.1186/s12284-014-0016-3
Type:
Article
ISSN:
1939-8433
Additional Links:
http://www.thericejournal.com/content/7/1/16
Appears in Collections:
Articles; Center for Desert Agriculture; Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorHairmansis, Arisen
dc.contributor.authorBerger, Bettinaen
dc.contributor.authorTester, Mark A.en
dc.contributor.authorRoy, Stuarten
dc.date.accessioned2015-04-16T14:03:35Zen
dc.date.available2015-04-16T14:03:35Zen
dc.date.issued2014-08-14en
dc.identifier.citationImage-based phenotyping for non-destructive screening of different salinity tolerance traits in rice 2014, 7 (1):16 Riceen
dc.identifier.issn1939-8433en
dc.identifier.doi10.1186/s12284-014-0016-3en
dc.identifier.urihttp://hdl.handle.net/10754/550221en
dc.description.abstractBackground Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion-independent stress and shoot ion dependent stress) makes it a useful tool for genetic and physiological studies to elucidate processes that contribute to salinity tolerance in rice. The technique has the potential for identifying the genetic basis of these mechanisms and assisting in pyramiding different tolerance mechanisms into breeding lines.en
dc.publisherSpringer Natureen
dc.relation.urlhttp://www.thericejournal.com/content/7/1/16en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.en
dc.subjectRice (Oryza sativa L.)en
dc.subjectSalinity toleranceen
dc.subjectPhenotypingen
dc.subjectImage analysisen
dc.subjectGrowthen
dc.subjectSenescenceen
dc.titleImage-based phenotyping for non-destructive screening of different salinity tolerance traits in riceen
dc.typeArticleen
dc.contributor.departmentCenter for Desert Agricultureen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.identifier.journalRiceen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionAustralian Centre for Plant Functional Genomics and the School of Agriculture Food and Wine, Waite Campus, University of Adelaide, PMB1 Glen Osmond, Adelaide 5064, SA, Australiaen
dc.contributor.institutionThe Plant Accelerator, Australian Plant Phenomics Facility, School of Agriculture Food and Wine, Waite Campus, University of Adelaide, PMB1 Glen Osmond, Adelaide 5064, SA, Australiaen
kaust.authorTester, Mark A.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.