Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

Handle URI:
http://hdl.handle.net/10754/335794
Title:
Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals
Authors:
Abulikemu, Mutalifu ( 0000-0002-3366-4239 )
Abstract:
Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the method was used for the in situ synthesis of gold nanoparticles as a model system. Relatively monodisperse gold nanoparticles were produced. The size and shape of gold nanoparticles can be controlled by the gold precursor and surfactant concentration in the ‘ink.’ This approach can be extended to the synthesis of other nanocrystals and is thus a truly impactful process for the low-cost synthesis of materials and devices incorporating nanocrystals.
Advisors:
Bakr, Osman ( 0000-0002-3428-1002 )
Committee Member:
Wu, Tao ( 0000-0003-0845-4827 ) ; Mohammed, Omar F. ( 0000-0001-8500-1130 ) ; Jabbour, Ghassan; Malik, Azad
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Program:
Materials Science and Engineering
Issue Date:
5-Nov-2014
Type:
Dissertation
Appears in Collections:
Dissertations; Physical Sciences and Engineering (PSE) Division; Materials Science and Engineering Program

Full metadata record

DC FieldValue Language
dc.contributor.advisorBakr, Osmanen
dc.contributor.authorAbulikemu, Mutalifuen
dc.date.accessioned2014-11-19T07:18:35Zen
dc.date.available2014-11-19T07:18:35Zen
dc.date.issued2014-11-05en
dc.identifier.urihttp://hdl.handle.net/10754/335794en
dc.description.abstractMetal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the method was used for the in situ synthesis of gold nanoparticles as a model system. Relatively monodisperse gold nanoparticles were produced. The size and shape of gold nanoparticles can be controlled by the gold precursor and surfactant concentration in the ‘ink.’ This approach can be extended to the synthesis of other nanocrystals and is thus a truly impactful process for the low-cost synthesis of materials and devices incorporating nanocrystals.en
dc.language.isoenen
dc.subjectNanocrystalsen
dc.subjectAntimony Sulfideen
dc.subjectGold Nanoparticlesen
dc.subjectSolar Cellsen
dc.subjectInkjet Printingen
dc.subjectNanocrystals Sensitized Solar Cellsen
dc.titleSynthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystalsen
dc.typeDissertationen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberWu, Taoen
dc.contributor.committeememberMohammed, Omar F.en
dc.contributor.committeememberJabbour, Ghassanen
dc.contributor.committeememberMalik, Azaden
thesis.degree.disciplineMaterials Science and Engineeringen
thesis.degree.nameDoctor of Philosophyen
dc.person.id102024en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.