Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

Handle URI:
http://hdl.handle.net/10754/333580
Title:
Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems
Authors:
Parsani, Matteo ( 0000-0001-7300-1280 ) ; Ketcheson, David I. ( 0000-0002-1212-126X ) ; Deconinck, W.
Abstract:
Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Numerical Mathematics Group
Citation:
Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems 2013, 35 (2):A957 SIAM Journal on Scientific Computing
Publisher:
Society for Industrial and Applied Mathematics
Journal:
SIAM Journal on Scientific Computing
Issue Date:
10-Apr-2013
DOI:
10.1137/120885899
ARXIV:
arXiv:1207.5830
Type:
Article
ISSN:
1064-8275; 1095-7197
Additional Links:
http://epubs.siam.org/doi/abs/10.1137/120885899; http://github.com/ketch/optimized-erk-sd-rr; http://arxiv.org/abs/1207.5830
Appears in Collections:
Articles; Numerical Mathematics Group; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorParsani, Matteoen
dc.contributor.authorKetcheson, David I.en
dc.contributor.authorDeconinck, W.en
dc.date.accessioned2014-11-03T16:18:25Z-
dc.date.available2014-11-03T16:18:25Z-
dc.date.issued2013-04-10en
dc.identifier.citationOptimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems 2013, 35 (2):A957 SIAM Journal on Scientific Computingen
dc.identifier.issn1064-8275en
dc.identifier.issn1095-7197en
dc.identifier.doi10.1137/120885899en
dc.identifier.urihttp://hdl.handle.net/10754/333580en
dc.description.abstractExplicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.en
dc.language.isoenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.urlhttp://epubs.siam.org/doi/abs/10.1137/120885899en
dc.relation.urlhttp://github.com/ketch/optimized-erk-sd-rren
dc.relation.urlhttp://arxiv.org/abs/1207.5830en
dc.rightsArchived with thanks to SIAM Journal on Scientific Computingen
dc.subjectoptimal explicit Runge–Kutta schemesen
dc.subjectspectral difference methoden
dc.subjectwave propagation problemsen
dc.titleOptimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problemsen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentNumerical Mathematics Groupen
dc.identifier.journalSIAM Journal on Scientific Computingen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionDepartment of Mechanical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgiumen
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
dc.identifier.arxividarXiv:1207.5830en
kaust.authorParsani, Matteoen
kaust.authorKetcheson, David I.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.