Superior thermoelectric response in the 3R phases of hydrated NaxRhO2

Handle URI:
http://hdl.handle.net/10754/325426
Title:
Superior thermoelectric response in the 3R phases of hydrated NaxRhO2
Authors:
Saeed, Y.; Singh, Nirpendra ( 0000-0001-8043-0403 ) ; Schwingenschlögl, Udo ( 0000-0003-4179-7231 )
Abstract:
Density functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d3z2-r2 orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Citation:
Saeed Y, Singh N, Schwingenschlögl U (2014) Superior thermoelectric response in the 3R phases of hydrated NaxRhO2. Sci Rep 4. doi:10.1038/srep04390.
Publisher:
Nature Publishing Group
Journal:
Scientific Reports
Issue Date:
17-Mar-2014
DOI:
10.1038/srep04390
PubMed ID:
24633155
PubMed Central ID:
PMC3955903
ARXIV:
arXiv:1311.3402
Type:
Article
ISSN:
20452322
Additional Links:
http://arxiv.org/abs/1311.3402
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorSaeed, Y.en
dc.contributor.authorSingh, Nirpendraen
dc.contributor.authorSchwingenschlögl, Udoen
dc.date.accessioned2014-08-27T09:50:53Zen
dc.date.available2014-08-27T09:50:53Zen
dc.date.issued2014-03-17en
dc.identifier.citationSaeed Y, Singh N, Schwingenschlögl U (2014) Superior thermoelectric response in the 3R phases of hydrated NaxRhO2. Sci Rep 4. doi:10.1038/srep04390.en
dc.identifier.issn20452322en
dc.identifier.pmid24633155en
dc.identifier.doi10.1038/srep04390en
dc.identifier.urihttp://hdl.handle.net/10754/325426en
dc.description.abstractDensity functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d3z2-r2 orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.en
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.relation.urlhttp://arxiv.org/abs/1311.3402en
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en
dc.titleSuperior thermoelectric response in the 3R phases of hydrated NaxRhO2en
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalScientific Reportsen
dc.identifier.pmcidPMC3955903en
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionUnidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autõnoma de México, Puerto Morelos, QR 77580, Mexicoen
dc.contributor.institutionSchool of Natural Sciences, University of California Merced, 5200 North Lake Road, Merced, CA 95343, United Statesen
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
dc.identifier.arxividarXiv:1311.3402en
kaust.authorSaeed, Yasiren
kaust.authorSingh, Nirpendraen
kaust.authorSchwingenschlögl, Udoen

Related articles on PubMed

This item is licensed under a Creative Commons License
Creative Commons
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.