Handle URI:
http://hdl.handle.net/10754/317746
Title:
Advanced Carbon Materials for Environmental and Energy Applications
Authors:
Dua, Rubal
Abstract:
Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise gained in synthesizing porous carbon materials, and owing to our group’s interest in developing suitable photoelectrode materials, this dissertation also proposes a novel carbon-Cu2O composite comprising of a carbon layer coated Cu2O nanowire array structure as a high performance and stable photoelectrode material for photoelectrochemical water splitting.
Advisors:
Wang, Peng ( 0000-0003-0856-0865 )
Committee Member:
Amy, Gary L.; Giannelis, Emmanuel P.; Lai, Zhiping ( 0000-0001-9555-6009 )
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division
Program:
Environmental Science and Engineering
Issue Date:
May-2014
Type:
Dissertation
Appears in Collections:
Environmental Science and Engineering Program; Dissertations; Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.advisorWang, Pengen
dc.contributor.authorDua, Rubalen
dc.date.accessioned2014-06-03T07:31:05Z-
dc.date.available2014-06-03T07:31:05Z-
dc.date.issued2014-05en
dc.identifier.urihttp://hdl.handle.net/10754/317746en
dc.description.abstractCarbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise gained in synthesizing porous carbon materials, and owing to our group’s interest in developing suitable photoelectrode materials, this dissertation also proposes a novel carbon-Cu2O composite comprising of a carbon layer coated Cu2O nanowire array structure as a high performance and stable photoelectrode material for photoelectrochemical water splitting.en
dc.language.isoenen
dc.subjectPorous Carbonen
dc.subjectActivated Carbonen
dc.subjectHeirarchical Porous Carbonen
dc.subjectCO2 captuleen
dc.subjectMembrane Foulingen
dc.subjectcapacitive Deionizationen
dc.subjectwater splittingen
dc.titleAdvanced Carbon Materials for Environmental and Energy Applicationsen
dc.typeDissertationen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberAmy, Gary L.en
dc.contributor.committeememberGiannelis, Emmanuel P.en
dc.contributor.committeememberLai, Zhipingen
thesis.degree.disciplineEnvironmental Science and Engineeringen
thesis.degree.nameDoctor of Philosophyen
dc.person.id113062en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.