Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

Handle URI:
http://hdl.handle.net/10754/315800
Title:
Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films
Authors:
Cossu, Fabrizio; Colizzi, G.; Filippetti, A.; Fiorentini, Vincenzo; Schwingenschlögl, Udo ( 0000-0003-4179-7231 )
Abstract:
Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.
KAUST Department:
Physical Sciences and Engineering (PSE) Division; Computational Physics and Materials Science (CPMS)
Citation:
Cossu F, Schwingenschlögl U, Colizzi G, Filippetti A, Fiorentini V (2013) Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films. Phys Rev B 87. doi:10.1103/PhysRevB.87.214420.
Publisher:
American Physical Society (APS)
Journal:
Physical Review B
Issue Date:
21-Jun-2013
DOI:
10.1103/PhysRevB.87.214420
ARXIV:
arXiv:1212.5038
Type:
Article
ISSN:
1098-0121; 1550-235X
Additional Links:
http://link.aps.org/doi/10.1103/PhysRevB.87.214420; http://arxiv.org/abs/1212.5038
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Computational Physics and Materials Science (CPMS)

Full metadata record

DC FieldValue Language
dc.contributor.authorCossu, Fabrizioen
dc.contributor.authorColizzi, G.en
dc.contributor.authorFilippetti, A.en
dc.contributor.authorFiorentini, Vincenzoen
dc.contributor.authorSchwingenschlögl, Udoen
dc.date.accessioned2014-04-13T14:32:11Z-
dc.date.available2014-04-13T14:32:11Z-
dc.date.issued2013-06-21en
dc.identifier.citationCossu F, Schwingenschlögl U, Colizzi G, Filippetti A, Fiorentini V (2013) Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films. Phys Rev B 87. doi:10.1103/PhysRevB.87.214420.en
dc.identifier.issn1098-0121en
dc.identifier.issn1550-235Xen
dc.identifier.doi10.1103/PhysRevB.87.214420en
dc.identifier.urihttp://hdl.handle.net/10754/315800en
dc.description.abstractUsing first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.en
dc.language.isoenen
dc.publisherAmerican Physical Society (APS)en
dc.relation.urlhttp://link.aps.org/doi/10.1103/PhysRevB.87.214420en
dc.relation.urlhttp://arxiv.org/abs/1212.5038en
dc.rightsArchived with thanks to Physical Review Ben
dc.titleSurface antiferromagnetism and incipient metal-insulator transition in strained manganite filmsen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentComputational Physics and Materials Science (CPMS)en
dc.identifier.journalPhysical Review Ben
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionCNR-IOM and Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (Ca), Italyen
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
dc.identifier.arxividarXiv:1212.5038en
kaust.authorCossu, Fabrizioen
kaust.authorSchwingenschlögl, Udoen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.