On the Sum of Gamma Random Variates With Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels

Handle URI:
http://hdl.handle.net/10754/241991
Title:
On the Sum of Gamma Random Variates With Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels
Authors:
Ansari, Imran Shafique ( 0000-0001-8461-6547 ) ; Yilmaz, Ferkan; Alouini, Mohamed-Slim ( 0000-0003-4827-1793 ) ; Kucur, Oguz
Abstract:
The probability distribution function (PDF) and cumulative density function of the sum of L independent but not necessarily identically distributed gamma variates, applicable to maximal ratio combining receiver outputs or in other words applicable to the performance analysis of diversity combining receivers operating over Nakagami-m fading channels, is presented in closed form in terms of Meijer G-function and Fox H-bar-function for integer valued fading parameters and non-integer valued fading parameters, respectively. Further analysis, particularly on bit error rate via PDF-based approach, too is represented in closed form in terms of Meijer G-function and Fox H-bar-function for integer-order fading parameters, and extended Fox H-bar-function (H-hat) for non-integer-order fading parameters. The proposed results complement previous results that are either evolved in closed-form, or expressed in terms of infinite sums or higher order derivatives of the fading parameter m.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Communication Theory Lab
Citation:
Ansari IS, Yilmaz F, Alouini M-S, Kucur O (2012) On the sum of gamma random variates with application to the performance of maximal ratio combining over Nakagami-m fading channels. 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). doi:10.1109/SPAWC.2012.6292935.
Publisher:
2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Journal:
2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Issue Date:
8-Sep-2012
DOI:
10.1109/SPAWC.2012.6292935
ARXIV:
arXiv:1202.2576
Type:
Conference Paper
ISSN:
1948-3244
ISBN:
978-1-4673-0970-7; 978-1-4673-0970-7
Additional Links:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6292935&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Don+the+sum+of+gamma+random+variates; http://arxiv.org/abs/1202.2576
Appears in Collections:
Articles; Communication Theory Lab; Communication Theory Lab; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorAnsari, Imran Shafiqueen
dc.contributor.authorYilmaz, Ferkanen
dc.contributor.authorAlouini, Mohamed-Slimen
dc.contributor.authorKucur, Oguzen
dc.date.accessioned2012-09-08T11:20:31Z-
dc.date.available2012-09-08T11:20:31Z-
dc.date.issued2012-09-08en
dc.identifier.citationAnsari IS, Yilmaz F, Alouini M-S, Kucur O (2012) On the sum of gamma random variates with application to the performance of maximal ratio combining over Nakagami-m fading channels. 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). doi:10.1109/SPAWC.2012.6292935.en
dc.identifier.isbn978-1-4673-0970-7en
dc.identifier.isbn978-1-4673-0970-7en
dc.identifier.issn1948-3244en
dc.identifier.doi10.1109/SPAWC.2012.6292935en
dc.identifier.urihttp://hdl.handle.net/10754/241991en
dc.description.abstractThe probability distribution function (PDF) and cumulative density function of the sum of L independent but not necessarily identically distributed gamma variates, applicable to maximal ratio combining receiver outputs or in other words applicable to the performance analysis of diversity combining receivers operating over Nakagami-m fading channels, is presented in closed form in terms of Meijer G-function and Fox H-bar-function for integer valued fading parameters and non-integer valued fading parameters, respectively. Further analysis, particularly on bit error rate via PDF-based approach, too is represented in closed form in terms of Meijer G-function and Fox H-bar-function for integer-order fading parameters, and extended Fox H-bar-function (H-hat) for non-integer-order fading parameters. The proposed results complement previous results that are either evolved in closed-form, or expressed in terms of infinite sums or higher order derivatives of the fading parameter m.en
dc.language.isoenen
dc.publisher2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)en
dc.relation.urlhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6292935&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Don+the+sum+of+gamma+random+variatesen
dc.relation.urlhttp://arxiv.org/abs/1202.2576en
dc.subjectGamma variatesen
dc.subjectCellular mobile radio systemsen
dc.subjectNon-integer parametersen
dc.subjectDiversityen
dc.subjectMaximal ratio combining (MRC)en
dc.subjectBinary modulation schemesen
dc.subjectBit error rate (BER)en
dc.subjectFox H-function distributionen
dc.subjectMeijer G-function distributionen
dc.subjectFox H-bar-function distributionen
dc.subjectExtended Fox H-bar-function (H-hat) distributionen
dc.titleOn the Sum of Gamma Random Variates With Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channelsen
dc.typeConference Paperen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentCommunication Theory Laben
dc.identifier.journal2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)en
dc.eprint.versionPre-printen
dc.contributor.institutionGebze Institute of Technology (GYTE)en
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
dc.identifier.arxividarXiv:1202.2576en
kaust.authorAnsari, Imran Shafiqueen
kaust.authorYilmaz, Ferkanen
kaust.authorAlouini, Mohamed-Slimen
This item is licensed under a Creative Commons License
Creative Commons
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.