Feasibility of Gallery Intake Systems for Seawater Reverse Osmosis Facilities along the Northern Red Sea Coast of Saudi Arabia

Handle URI:
http://hdl.handle.net/10754/215929
Title:
Feasibility of Gallery Intake Systems for Seawater Reverse Osmosis Facilities along the Northern Red Sea Coast of Saudi Arabia
Authors:
Dehwah, Abdullah
Abstract:
The Kingdom of Saudi Arabia is dependent on desalination of seawater to provide new water supplies for the future. Desalination is expensive and it is very important to reduce the cost and lower the energy consumption. Most seawater reverse osmosis facilities use open-ocean intakes, which require extensive pre-treatment processes to remove particulate and biological materials that cause operating problems. An alternative intake is the subsurface system which utilizes the concept of riverbank filtration using wells or galleries and provides natural filtration to improve the quality of feedwater before it enters the desalination plant. This reduces operating cost and lowers energy consumption. Research was focused on evaluating gallery-type intakes (beach and seabed galleries) that could be used along the Northern Red Sea shoreline to provide a better quality feedwater for desalination. The geological characteristics of the visited sites were favorable for the development of seabed filter systems (offshore), but not for beach gallery intakes. The low wave energy along the shoreline and the presence of mud or rocky coasts made beach galleries infeasible. One of the potentially favorable sites for a seabed filter was located in the nearshore area at King Abdullah Economic City (KAEC). This site has a predominantly sandy offshore bottom with shallow water depths, and a low tide range. In addition, the bottom is always covered with water and contains soft limestone unit below the sand mantle that could be easy excavated to facilitate the construction of a seabed filter. About 50 sediment samples were collected from the site and laboratory measurements were performed on them. Grain size distribution, porosity and hydraulic conductivity measurements were performed on the sediment samples. In addition, six statistical methods were used to estimate the hydraulic conductivity values. Based on results of lab measurements, field observations, tide ranges and sediment types, it is concluded that the geological conditions and characteristics of KAEC site are feasible for design and construction of a seabed filtration system. A conservatively designed cell with dimensions of 100 by 50 m would produce about 25,000 m3/day of filtered seawater and seven cells could support a 60,000 m3/day (permeate) seawater RO plant.
Advisors:
Missimer, Thomas M.
Committee Member:
Amy, Gary L.
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division
Program:
Environmental Science and Engineering
Issue Date:
Mar-2012
Type:
Thesis
Appears in Collections:
Environmental Science and Engineering Program; Theses; Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.advisorMissimer, Thomas M.en
dc.contributor.authorDehwah, Abdullahen
dc.date.accessioned2012-03-18T06:23:48Z-
dc.date.available2012-03-18T06:23:48Z-
dc.date.issued2012-03en
dc.identifier.urihttp://hdl.handle.net/10754/215929en
dc.description.abstractThe Kingdom of Saudi Arabia is dependent on desalination of seawater to provide new water supplies for the future. Desalination is expensive and it is very important to reduce the cost and lower the energy consumption. Most seawater reverse osmosis facilities use open-ocean intakes, which require extensive pre-treatment processes to remove particulate and biological materials that cause operating problems. An alternative intake is the subsurface system which utilizes the concept of riverbank filtration using wells or galleries and provides natural filtration to improve the quality of feedwater before it enters the desalination plant. This reduces operating cost and lowers energy consumption. Research was focused on evaluating gallery-type intakes (beach and seabed galleries) that could be used along the Northern Red Sea shoreline to provide a better quality feedwater for desalination. The geological characteristics of the visited sites were favorable for the development of seabed filter systems (offshore), but not for beach gallery intakes. The low wave energy along the shoreline and the presence of mud or rocky coasts made beach galleries infeasible. One of the potentially favorable sites for a seabed filter was located in the nearshore area at King Abdullah Economic City (KAEC). This site has a predominantly sandy offshore bottom with shallow water depths, and a low tide range. In addition, the bottom is always covered with water and contains soft limestone unit below the sand mantle that could be easy excavated to facilitate the construction of a seabed filter. About 50 sediment samples were collected from the site and laboratory measurements were performed on them. Grain size distribution, porosity and hydraulic conductivity measurements were performed on the sediment samples. In addition, six statistical methods were used to estimate the hydraulic conductivity values. Based on results of lab measurements, field observations, tide ranges and sediment types, it is concluded that the geological conditions and characteristics of KAEC site are feasible for design and construction of a seabed filtration system. A conservatively designed cell with dimensions of 100 by 50 m would produce about 25,000 m3/day of filtered seawater and seven cells could support a 60,000 m3/day (permeate) seawater RO plant.en
dc.language.isoenen
dc.subjectIntakeen
dc.subjectDesalinationen
dc.subjectSubsurfaceen
dc.subjectBeach Galleryen
dc.subjectSeabed galleryen
dc.titleFeasibility of Gallery Intake Systems for Seawater Reverse Osmosis Facilities along the Northern Red Sea Coast of Saudi Arabiaen
dc.typeThesisen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberAmy, Gary L.en
thesis.degree.disciplineEnvironmental Science and Engineeringen
thesis.degree.nameMaster of Scienceen
dc.person.id113232en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.