iHadoop: Asynchronous Iterations Support for MapReduce

Handle URI:
http://hdl.handle.net/10754/209389
Title:
iHadoop: Asynchronous Iterations Support for MapReduce
Authors:
Elnikety, Eslam
Abstract:
MapReduce is a distributed programming framework designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop's task scheduler exploits inter- iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application's latency. This thesis also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches invariant data between iterations, reduces execution time by 38% on average.
Advisors:
Ramadan, Hany
Committee Member:
Kalnis, Panos ( 0000-0002-5060-1360 ) ; Sahu, Sambit
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Program:
Computer Science
Issue Date:
Aug-2011
Type:
Thesis
Appears in Collections:
Theses; Computer Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.advisorRamadan, Hanyen
dc.contributor.authorElnikety, Eslamen
dc.date.accessioned2012-02-04T08:09:40Z-
dc.date.available2012-02-04T08:09:40Z-
dc.date.issued2011-08en
dc.identifier.urihttp://hdl.handle.net/10754/209389en
dc.description.abstractMapReduce is a distributed programming framework designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop's task scheduler exploits inter- iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application's latency. This thesis also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches invariant data between iterations, reduces execution time by 38% on average.en
dc.language.isoenen
dc.titleiHadoop: Asynchronous Iterations Support for MapReduceen
dc.typeThesisen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberKalnis, Panosen
dc.contributor.committeememberSahu, Sambiten
thesis.degree.disciplineComputer Scienceen
thesis.degree.nameMaster of Scienceen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.