The Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thaliana

Handle URI:
http://hdl.handle.net/10754/136192
Title:
The Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thaliana
Authors:
Zhao, Junsong
Abstract:
The Arabidopsis thaliana NCED3‐LUC transgenic line was constructed by several groups to study the regulatory network of the NCED3 gene, the protein of which catalyzes the rate‐limiting step of ABA biosynthesis under drought. The transgenic luciferase gene is expressed when the plants encounter drought stress. Intriguingly, this transgenic luciferase gene is silenced after propagation for several generations. To determine the mechanism of this gene silencing, we used a forward genetics approach. The seeds of NCED3‐LUC (referred as the ‘wild type’) were mutagenized by ethane methyl sulfonate (EMS). One mutant line, denoted as #73, with recovered luciferase activity was selected for further study. Analysis of the methylation status by bisulfite sequencing revealed that the transgenic NCED3 promoter in the #73 mutant had less methylation than the wild type. Demethylation was also evident for the endogenous NCED3 promoter and retrotransposon AtSN1 in the #73 mutant. The phenotype of #73 mutant includes small size, rapid dehydration rate, altered morphology, and a thin epicuticular wax layer. By use of map‐based cloning, the region containing the mutated gene was delimited to a contig of two BAC clones, F11F19 and F9C22, on chromosome 2. Our results indicate that NCED3‐LUC gene silencing results from hypermethylation of its promoter region, but additional study is required to determine the exact position of the mutated gene and to fully understand the mechanism of NCED3‐LUC silencing. 4 ACKNOWLEDGEMENTS I would like to take this opportunity to thank my committee chair, Professor Jian‐Kang Zhu, who is also the supervisor of my master’s thesis, for his guidance throughout the course of this research. I also would like to thank my committee members, Professor Liming Xiong and Professor Samir Hamdan, for their patience and support in reviewing my thesis. My appreciation also goes to Dr. Zhenyu Wang for taking time to teach me basic experimental skills and for providing suggestions to my project. Meanwhile, my gratitude goes to my friends and lab mates and the department faculty. Thank you all for making my time at King Abdullah University of Science and Technology so wonderful. Finally, my heartfelt gratitude is extended to my parents for their everlasting support and encouragement.
Advisors:
Zhu, Jian-Kang ( 0000-0001-5134-731X )
Committee Member:
Hamdan, Samir; Xiong, Liming ( 0000-0001-8099-0806 )
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division
Program:
Bioscience
Issue Date:
20-Jun-2011
Type:
Thesis
Appears in Collections:
Bioscience Program; Theses; Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.advisorZhu, Jian-Kangen
dc.contributor.authorZhao, Junsongen
dc.date.accessioned2011-07-17T09:35:30Z-
dc.date.available2011-07-17T09:35:30Z-
dc.date.issued2011-06-20en
dc.identifier.urihttp://hdl.handle.net/10754/136192en
dc.description.abstractThe Arabidopsis thaliana NCED3‐LUC transgenic line was constructed by several groups to study the regulatory network of the NCED3 gene, the protein of which catalyzes the rate‐limiting step of ABA biosynthesis under drought. The transgenic luciferase gene is expressed when the plants encounter drought stress. Intriguingly, this transgenic luciferase gene is silenced after propagation for several generations. To determine the mechanism of this gene silencing, we used a forward genetics approach. The seeds of NCED3‐LUC (referred as the ‘wild type’) were mutagenized by ethane methyl sulfonate (EMS). One mutant line, denoted as #73, with recovered luciferase activity was selected for further study. Analysis of the methylation status by bisulfite sequencing revealed that the transgenic NCED3 promoter in the #73 mutant had less methylation than the wild type. Demethylation was also evident for the endogenous NCED3 promoter and retrotransposon AtSN1 in the #73 mutant. The phenotype of #73 mutant includes small size, rapid dehydration rate, altered morphology, and a thin epicuticular wax layer. By use of map‐based cloning, the region containing the mutated gene was delimited to a contig of two BAC clones, F11F19 and F9C22, on chromosome 2. Our results indicate that NCED3‐LUC gene silencing results from hypermethylation of its promoter region, but additional study is required to determine the exact position of the mutated gene and to fully understand the mechanism of NCED3‐LUC silencing. 4 ACKNOWLEDGEMENTS I would like to take this opportunity to thank my committee chair, Professor Jian‐Kang Zhu, who is also the supervisor of my master’s thesis, for his guidance throughout the course of this research. I also would like to thank my committee members, Professor Liming Xiong and Professor Samir Hamdan, for their patience and support in reviewing my thesis. My appreciation also goes to Dr. Zhenyu Wang for taking time to teach me basic experimental skills and for providing suggestions to my project. Meanwhile, my gratitude goes to my friends and lab mates and the department faculty. Thank you all for making my time at King Abdullah University of Science and Technology so wonderful. Finally, my heartfelt gratitude is extended to my parents for their everlasting support and encouragement.en
dc.language.isoenen
dc.titleThe Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thalianaen
dc.typeThesisen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberHamdan, Samiren
dc.contributor.committeememberXiong, Limingen
thesis.degree.disciplineBioscienceen
thesis.degree.nameMaster of Scienceen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.