Fast Crystallization and improved Stability of Perovskite Solar Cells with ZnSnO Electron Transporting Layer: Interface Matters

Ashok Bera, Arif D. Sheikh, Md Azimul Haque, Riya Bose, Erkki Alarousu, Omar F. Mohammed, and Tom Wu

ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.5b09182 • Publication Date (Web): 03 Dec 2015

Downloaded from http://pubs.acs.org on December 8, 2015

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Fast Crystallization and improved Stability of Perovskite Solar Cells with Zn$_2$SnO$_4$ Electron Transporting Layer: Interface Matters

Ashok Bera†, Arif D. Sheikh†, Md. Azimul Haque†, Riya Bose†, Erkki Alarousu†, Omar F. Mohammed†, Tom Wu†*,

†Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. E-mail: tao.wu@kaust.edu.sa

†Solar and Photovoltaics Engineering Research Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

Abstract

Here we report that mesoporous ternary oxide Zn$_2$SnO$_4$ can significantly promote the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO$_2$ in the similar experimental conditions (9.1%). Simple one-step spin coating of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ on Zn$_2$SnO$_4$ is found to lead to rapidly crystalized bilayer perovskite structure without any solvent engineering. Furthermore, ultrafast transient absorption measurement reveals efficient charge transfer at the Zn$_2$SnO$_4$/perovskite interface. Most importantly, solar cells with Zn$_2$SnO$_4$ as the electron-transporting material exhibit negligible electrical hysteresis and exceptionally high stability without encapsulation for over one month. Besides underscoring Zn$_2$SnO$_4$ as a highly promising electron transporting material for perovskite solar cells, our results demonstrate the significant role of interfaces on improving the perovskite crystallization and photovoltaic performance.

Keywords: perovskite solar cells; Zn$_2$SnO$_4$; electron transport layer; transient absorption spectroscopy
1. Introduction

Organometallic hybrid perovskites have recently attracted enormous attention for applications in thin film photovoltaic technology.1-16 These hybrid methylammonium lead halide perovskites (e.g., CH$_3$NH$_3$PbX$_3$, X= I, Cl, Br) exhibit superior properties such as solution processability,3, 13 strong light absorption,17 ambipolar charge transport,5, 18 long carrier diffusion length,6, 19 and tunable chemical composition and band gap.10, 20-21 In commonly used perovskite solar cell structures, a layer of perovskite absorber is deposited over a compact or mesoporous (mp) oxide electron transport layer (ETL), which is followed by a hole transporting layer (HTL) made of typically 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobi fluorene (spiro-MeOTAD). Despite the escalating efficiency, the bottleneck for the perovskite-based photovoltaic technology is the tendency of device degradation by humidity due to the hygroscopic nature of the organic ions in hybrid perovskites. Furthermore, in the solution-based process, the crystallization of the perovskite layers is critical but complex to precisely control, which unfortunately compromises the performance of the final solar cells.

It is a consensus that the perovskite crystallization closely depends on multiple factors such as solvent choice, solution concentration, precursor composition, and deposition temperature.3, 22-24 For the commonly used ETL of mp-TiO$_2$, there have been significant discrepancies in the literature as a result of the poor control on the crystallization process and the resultant morphology of the perovskite layers, and the solar cell performance often suffer from the incomplete coverage of the perovskite layer.25-26 Compromised growth control and defective perovskite/ETL interface also contribute to severe hysteresis observed in the electrical characterizations.3 Therefore, a satisfactory ETL should not only lower the dark current and series resistance,27 but also promote the crystallization of high-quality perovskite layers. So far,
most reports in literature were focused on improving the quality of perovskite films formed on mp-TiO$_2$, which remains as the dominant ETL. However, finding alternative oxide ETL with appropriate band alignments, high electron mobility and solution processability clearly represents a powerful but largely unexplored route toward realizing high-performance perovskite solar cells.

In this paper, we report the superior performance of ternary oxide Zn$_2$SnO$_4$ (ZTO) as ETL in mixed-halide perovskite (CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$) solar cells. ZTO was previously explored as electron transporter in solar cells,$^{28-32}$ but its advantages as an effective template for growing high-quality perovskite layers deserve in-depth explorations. In our work, we found that interfacing with mp-ZTO could significantly improve the crystallization of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ layer in the single-step spin coating process. The rate of perovskite crystallization on mp-ZTO is much faster than that on mp-TiO$_2$, which promotes the formation of bilayer perovskite structures with a uniformly crystallized overlayer and perovskite grains are as large as 2 µm. The energy conversion efficiency of the perovskite solar cells with the ZTO ETL reaches 13.34%, which is even higher than that reported for devices with one-step spin-coated CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ on TiO$_2$ ETL.$^{13, 25, 33-37}$ Furthermore, the perovskite solar cells with ZTO as ETL exhibit negligible electrical hysteresis and high stability without encapsulation, which underscore the significant role of ZTO/perovskite interface on improving the overall device performance.

2. Experimental section

2.1. Materials preparation

Methylammonium iodide (CH$_3$NH$_3$I) was synthesized following the previously reported method.13 2.7M CH$_3$NH$_3$I and 0.9M PbCl$_2$ was dissolved in anhydrous N,N-
Dimethylformamide, to produce a mixed halide perovskite precursor solution. ZTO nanoparticles are synthesized by decomposing a mixture of zinc and tin tert-butylamine complexes under hydrothermal conditions. ZTO paste was prepared using the procedure similar to a previous report on making the TiO₂ paste. First, ZTO nanoparticles were dispersed in ethanol followed by adding Ethylcellulose, Lauric acid, and Terpineol, and then ethanol was removed from the solution using a rotary evaporator to obtain viscous pastes. Finally, the paste was diluted with ethanol in 3:2 weight ratio for the spin coating.

2.2. Solar cell fabrication

Fluorine-doped tin oxide (F:SnO₂) coated glass (Pilkington TEC A7) was etched with Zn powder and 2 M HCl and then washed in DI water. The etched substrate was then cleaned by detergent, DI water, acetone and ethanol using an ultrasonic cleaner, and then dried. The substrate underwent an oxygen plasma treatment for 10 minutes prior to the deposition of compact ZTO hole blocking layer. Compact ZTO was deposited by spin coating a solution of Zinc acetate and Tin acetate in 2-methoxy ethanol in 2:1 molar ratio for 40 seconds at 3000 rpm. Ethanolamine was used as the stabilizer. Then the coated thin film was dried at 150 °C for 15 min followed by an annealing at 500°C for 30 min. The mp-ZTO was deposited by spin coating the diluted paste for 45 seconds at 2000 rpm and then annealed at 500 °C for 1 hour. The perovskite precursor solution was then spin coated on mp-electrode at 2000 rpm for 60 seconds and dried at 100°C for about 1 hour. A 68 mM Spiro-OMeTAD solution in chlorobenzene containing 55 mM tert-butylpyridine and 9 mM lithium bis(trifluoromethylsulfonfonyl)imide (LiTFSI) salt was spun on the perovskite-coated substrates at a rate of 2000 rpm for 45 seconds and then the cells were kept in the dark for overnight. Finally, Au electrodes with a thickness of 70 nm were evaporated by thermal evaporation to complete the device.
2.3. Materials characterizations

The structure and the morphology of the CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ grown on mp-ZTO were examined using X-ray diffractometer (Bruker D8) and field emission scanning electron microscopy (FEI-NANO NOVA-600) and atomic force microscopy (Bruker Dimension Icon). The porosity and the surface area of the mesoporous layers were measured via the Brunauer-Emmett-Teller (BET) method on a Micromeritics ASAP 2420 system. The absorption spectra were measured using a Varian carry 6000i spectrophotometer.

2.4. Solar cell characterizations

The current density–voltage (J–V) curves were measured using Oriel PVIV test solution software connected with a source meter (Keithley 2400) under the illumination at 100 mW/ cm2 illumination (AM 1.5G) from a solar simulator (Newport, Oriel Class A, 91195A) and a calibrated Si-reference cell certificated by NREL. The J–V curves of all devices were measured by masking the unwanted area with black tape so that the exposed active area was 0.2 cm2. To characterize the device stability, we stored the samples in dry air in a desiccator between the measurements. The external quantum efficiency of the device was measured using an Oriel IQE-200 quantum efficiency measurement system.

3. Result and discussion

Figure 1(a) illustrates the cubic-type spinel structure of the ZTO. Figure 1(b) shows the schematic band alignment of the ZTO ETL, perovskite CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ absorber and spiro-MeOTAD HTL, where the energy bands are well aligned for the effective separation and injection of photo-excited carriers. Spinel-structured ZTO has a band gap of 3.7 eV, much wider than that of TiO$_2$ (3.2 eV), and its conduction band edge is about 0.1 eV lower than that of TiO$_2$. One main advantage of using ZTO as ETL is that its electron mobility is on the order of...
10-15 cm²V⁻¹S⁻¹,⁴⁰-⁴¹ much higher than that of TiO₂ (0.1–4 cm²V⁻¹s⁻¹)⁴². In dye sensitized solar cells (DSSC), it has been recently reported that the charge injection from the sensitizer and the electron diffusion through the nanoparticle network are significantly faster for the ZTO photoanode than the TiO₂-based counterpart.⁴³ Furthermore, ZTO thin films with high electron mobility can be formed below 500 °C by solution processing.³⁸ In contrast, other ternary oxides often need much higher temperatures to crystalize, e.g., formation of high-quality perovskite oxide SrTiO₃ layers occurs at about 750 °C.⁴⁴

The X-ray diffraction (XRD) spectrum of the mp-ZTO layer formed after annealing at 500 °C is shown in Figure 1(c), which confirms the well-crystallized cubic spinal phase (JCPDS no. 24-1470). The average pore diameter of mp-ZTO is 16.4 nm, and its surface area is 63.4 m²/g, as estimated from the BET measurement (supporting information Figure S1a). These values are comparable to those of the mp-TiO₂ photoelectrode (pore diameter: 23 nm; surface area: 69 m²/g) obtained from the commercial TiO₂ paste.⁴⁵ Because ZTO and FTO have very similar refractive indices, coating the ZTO photoelectrode on FTO-coated glass substrates does not change much the transmittance spectra (supporting information Figure S1b).⁴³

In this work, we deposited CH₃NH₃PbI₃-xClₓ perovskite layer via one-step spin coating onto the FTO/cp-ZTO/mp-ZTO substrates. Perovskite layers can also be deposited via two-step sequential deposition process, i.e., a PbI₂ layer was spin-coated first on mp-ZTO, followed by dipping the substrate in CH₃NH₃I (MAI) solution.³⁰ But such a two-step process was found to lead to poor morphology and incomplete surface coverage of the perovskite layers, and the fabricated perovskite solar cells with ZTO ETL exhibited an efficiency of merely 7%.³⁰ In our experiments, a solution of PbCl₂ and MAI in dimethylformamide (DMF) with a molar ratio of 1:3 was spin-coated on the substrates and annealed at 100 °C.
The transformation of the perovskite phase was characterized by XRD and transmittance measurements. Figure 2a shows the time-dependent evolution of the XRD patterns of the as-prepared CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ film on FTO/cp-ZTO/mp-ZTO. Surprisingly, after annealing for only one minute, the perovskite film already displayed intense characteristic peaks. Sharp peaks at 14.2°, 28.5°, 31.87° and 43.2° correspond to the (1 10), (2 20), (3 1 0) and (3 3 0) planes of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$, respectively, and other weaker peaks can be assigned to (1 12), (0 2 2) and (2 2 4) planes, indicating the formation of perovskite phase with high crystallinity.$^{46-47}$ The complete transformation into the perovskite phase was observed within 10 minutes of annealing. This fast crystallization was also confirmed by the optical transmittance measurements; as shown in Figure 2b, the characteristics absorption reached saturation after 10 minutes of annealing. In contrast, for mp-TiO$_2$, the transmittance spectra continuously evolved for the first 30 min, and the formation of perovskite was completed only after annealing of one hour (supporting information Figure S2). This agrees with the reported annealing times of 45 min at 100 °C necessary to prepare high-quality CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ layers on TiO$_2$ ETL.48 Our results indicate that mp-ZTO effectively accelerates the crystallization of the perovskite layer, which was further confirmed by the photos taken during the annealing process (supporting information Figure S3). The color of the CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ film on mp-TiO$_2$ remained yellow even after 30 min of annealing, and it needed about one hour to complete the formation of perovskite phase,4 whereas the CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ film on mp-ZTO became dark brown in the very first minute. This intriguing behavior of fast crystallization of perovskite on mp-ZTO could be related to the efficient nucleation of perovskite grains at the perovskite/ETL interface, which warrants further studies. The transmittance spectra of mp-ZTO and mp-TiO$_2$ photoanodes (inset of figure 2b) in
the UV-to-near-visible range show that mp-ZTO transmits more light compared to mp-TiO₂, which benefits the effective light absorption of the perovskite layers.

Morphology of the perovskite layers was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The film surface is featured with grains as large as two µm (Figure 3a), and the root-mean-square roughness is 27.2 nm with the scanning area of 5µm × 5µm. The top-view SEM image in Figure 3b confirms that the entire film is composed of homogeneous, well-crystallized perovskite grains. In contrast, single-step spin coating on the mp-TiO₂ layer led to non-uniform perovskite islands with incomplete surface coverage, as shown in supporting information Figure S4. In addition, the cross-sectional SEM image of the optimized device shows a uniform bilayer structure (Figure 3c), i.e., the perovskite is completely infiltrated into the pores of the mp-ZTO film, and also forms a uniform well-crystallized perovskite overlayer about 200 nm thick with full surface coverage. This kind of bilayer perovskite morphology on ETL benefits the solar cell performance, which was previously achieved only when solvent engineering was applied to the spin coating process.³

The photovoltaic performance of these CH₃NH₃PbI₃₋ₓClₓ solar cells was measured in air under AM 1.5G (100 mW/cm²) simulated solar irradiation. The J–V characteristics of the champion device with the ZTO ETL measured in dark and under light are given in Figure 4a. Short-circuit photocurrent density (Jₜₜ) of 19.58mA/cm², open-circuit voltage (Vₜₜ) of 0.932V, and fill factor (FF) of 72.65% were observed, leading to PCE (η) of 13.34 %. This efficiency is higher than those of recently reported perovskite solar cells with one-step spin-coated CH₃NH₃PbI₃₋ₓClₓ layers on mp-TiO₂ ETL.¹³, ²⁵, ³³-³⁷ The external quantum efficiency (EQE) of our CH₃NH₃PbI₃₋ₓClₓ solar cells was measured by monitoring the photocurrent at different wavelengths, and the data is shown in Figure 4b. The estimated current density by integrating the
EQE spectrum with the AM 1.5G solar spectrum matches well with J_{SC}, confirming the validity of our measurements. The statistics of 24 perovskite solar cells using mp-ZTO ETL indicate consistent performance, as shown in Supporting Information, Figures S5. Our devices have an average PCE of 12.42% with J_{SC} of 19.86 mA/cm2, V_{OC} of 0.92 V, and FF of 68%. V_{OC} of the ZTO-based solar cells is slightly lower than that of the TiO$_2$-based ones, which could result from the slightly lower conduction band edge of ZTO compared to TiO$_2$.

We should note here special attentions are needed for the preparation of the ZTO layers, which is the key to achieving high efficiency in the perovskite solar cells. In particular, to prepare the ZTO layers, we spin coated a solution of zinc acetate and tin acetate in 2-methoxy ethanol with ethanolamine as a stabilizer. In contrast, if we simply used zinc chloride and tin chloride in alcohol, we found significant phase separation into ZnO and SnO, and the maximum efficiency achieved in the devices was only about 5%. Furthermore, we found that using ZTO as both the compact layer and the mp-layer is critical for achieving efficient perovskite solar cells. As control devices, we also tried to combine compact TiO$_2$ layers and mp-ZTO, but the best performing device showed a PCE of only about 7% (supporting information Figure S6).

Although one-step spin coating of perovskite layers saves processing time compared to the two-step counterpart, such perovskite solar cells in both mesoporous and planar configurations suffer from anomalous hysteresis in the J-V characteristics, making it difficult to accurately benchmark the device performance. Voltage scanning direction and rate as well as bias history were all found to significantly influence the electrical hysteresis, which could lead to either over or underestimated efficiency values. Structural defects and ferroelectric polarization were hypothesized as the origins of the I–V hysteresis. If the perovskite absorbers
have lots of defects, then the associated interface states could act as traps for electrons and holes. On the other hand, the interface trap states are reduced in perovskite layers with large well-crystallized grains, and high-quality mesoporous ETL also facilitates the quick dissipation of capacitive charges, reducing hysteresis in perovskite solar cells.50 Since the perovskite layers are well crystallized in our devices, we expect better perovskite/ZTO interfaces and less hysteresis in our device characteristics. Indeed, as shown in Figure 4c, J-V curves of our devices exhibited negligible dependence on the scanning directions and rate. For this particular device, the PEC values are 12.6\% and 12.4\% for reverse ($V_{OC} \rightarrow J_{SC}$) and forward ($J_{SC} \rightarrow V_{OC}$) scanning directions, respectively. In contrast, inset of Figure 4d shows the typical J–V characteristics of the perovskite solar cell using mp-TiO$_2$ as ETL, which shows a significant hysteresis with efficiencies of 9.1\% and 7.76\% for reverse and forward scanning directions, respectively. The scan rate dependence of the J-V characteristics in the ZTO-based device is given in Figure 4d, and no significant change in the J-V characteristics was observed up to a scan speed of 0.5 V/s.

Because transient absorption (TA) spectroscopy gives direct information regarding carrier dynamics and excited-state deactivation pathways including electron injection,52-53 we utilized this method to examine the electron transfer from CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ to ETL upon photoexcitation. The details of experimental setups can be found in our previous reports.54-55 The TA data of bilayers of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ with ZTO and TiO$_2$ at the 440 nm excitation are given in Figure 5. The characteristic decay time constant of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ with ZTO is estimated to be 0.5 ns (for 90\% of the total amplitude). This characteristic decay time is much shorter than those of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ with TiO$_2$ (3.7 ns) and with perovskite ternary oxide SrTiO$_3$ (2.7 ns)45, which suggest that the extraction of photoelectrons by ZTO is more efficient than the other two oxides.
Stability of perovskite solar cells has been a top concern as a result of the hygroscopic nature of the alkylammonium cation present in the perovskite unit cell. To determine the stability of our devices, we measured J_{sc} under constant 100 mW/cm2 AM 1.5G illumination. We found that after two hours of illumination, J_{SC} of the ZTO-based device decreased by only 12% (Figure 6a), while the TiO$_2$-based counterpart suffered from a severe J_{SC} decrease of 27%, which is similar to the previous reports.2,56 We also monitored the $J-V$ characteristics of our devices under dark storage, and the device maintained an efficiency of about 9.8% after one month. The evolution of solar cell parameters is given in Figure 6b, and the $J-V$ characteristics after different dark storage times can be found in Supporting Information Figure S7. The average performance of multiple devices after one month of dark storage is given in the supporting information table S1. Recently, we have reported the effects of dark storage in different atmospheres on the commonly studied TiO$_2$-based perovskite solar cells, and the efficiency generally decreased by more than 50% from its maximum value after 10 days.36 In the case of ZTO-based devices, we found that the efficiency slightly increased during the first three days, which could be related to the enhanced in p-type conductivity in the LiTFSI-doped spiro-MeOTAD after storage in dry air.57 The decrease of device efficiency afterwards can be attributed to the sharp decline of J_{SC}.

Interestingly, V_{OC} and FF slightly increase with the storage time, which helps to maintain the efficiency at approximately 9.87% even after one month. Recently, Wang et al. proposed that exposure to light lowers the Fermi level of spiro-MeOTAD,58 which may contribute to the notable increases of V_{OC} and FF during measurements.

The mechanism behind the high stability of perovskite solar cells with ZTO ETL is related to the optimal morphology of perovskite layers. As shown in Figure 3c, the perovskite layers are featured with a well-crystallized overlayer with grains as large as two µm. It is known
that grain boundaries and structural defects are the sites susceptible to the attack of moisture.59-60 Such optimal crystallization and morphology of the perovskite layers also contributed to the high energy conversion efficiency (Figure 4a) and negligible electrical hysteresis (Figure 4C). Although the structural and chemical properties of the perovskite/ETL interface are difficult to directly probe because of the delicate nature of hybrid perovskites, we might hypothesize that the interfacial bonding between the perovskite and the ZTO layers is quite strong, which suppresses the infiltration of water molecules and improves the device stability.

Our result differs from the previous reports on perovskite solar cells using ZTO as ETL in terms of both synthesis and device performance.30-32 We deposited the perovskite layers using the simple one-step spin coating method and our experiments revealed the fast crystallization behavior of the perovskite layers on ZTO. The efficiency of our ZTO-based devices is quite high (13.4\%) and our devices are almost hysteresis free. Furthermore, there has been no discussion regarding the device stability in the previous reports, whereas our devices remained stable in air with efficiency about 10\% for over one month. These merits of using ZTO as ETL in perovskite solar cells would motivate more research works and facilitate the commercialization of perovskite solar cells.

Interface engineering has been identified as the key to achieve high energy conversion efficiency in perovskite solar cells.4 Proper band alignment is known to facilitate the charge extraction and collection, which guides the selection of ETL during the design of perovskite solar cells. What remains largely unexplored is the role of interface on the nucleation and growth during the solution processing of perovskite. In the present work, we found that ZTO can significantly speed up the crystallization of hybrid perovskite layers, shortening the annealing time from one hour to several minutes. Interestingly, Zn-containing compounds generally appear
to be effective to accelerate the crystallization of perovskite layers. Faster growth of perovskite layers on ZnO ETL by sequential deposition has also been reported recently.61 There could be at least two reasons behind the fast crystallization of perovskite layers on such Zn-containing ETLs. One may have a thermodynamic origin: the interface energy between perovskites and such ETLs could be small, which favors the nucleation of perovskite grains on the Zn-containing oxides. The other reason may be related to the reaction kinetics. It was recently proposed that the crystallization of CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3-x}Cl\textsubscript{x} from CH\textsubscript{3}NH\textsubscript{3}I and PbCl\textsubscript{2} is mediated by the release of intermediate gaseous CH\textsubscript{3}NH\textsubscript{3}Cl (or other organic chlorides).62-64 As a result, the Cl content in CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3-x}Cl\textsubscript{x} decreases with annealing time, and the precise amount of Cl and its distribution after the complete perovskite formation sensitively depends on the processing details.62,64 Most likely, in the presence of Zn in the ETL, the Cl evaporation takes place very quickly, causing faster crystallization of CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3-x}Cl\textsubscript{x}. In other words, the volatile Cl-containing compounds may react with the Zn-containing oxide ETL, which drives the reaction of perovskite formation. It will be interesting to explore if other ETLs can lead to such a fast nucleation behavior similar to ZnO and ZTO, and in-depth understanding will surely benefit the efficient and reliable synthesis of high-quality perovskite films.

4. Conclusion

In summary, we have demonstrated efficient mixed-halide perovskite solar cells with negligible hysteresis and high stability using spinal-structured ZTO as the ETL. Importantly, we found that mp-ZTO significantly accelerates the crystallization of the perovskite layers, and with simple one-step spin coating, we achieved a bilayer structure of perovskite with uniform and full surface coverage. The ultrafast transient spectroscopy study revealed fast and efficient photo-
carrier extraction by the ZTO layers from the perovskite. Fast charge transfer and good perovskite crystallization lead to negligible hysteresis in the $J-V$ curves of our perovskite solar cells. The energy conversion efficiency of such ZTO-based solar cells reaches 13.34%, and it can be maintained at a level of 10% over a period of one month without any encapsulation. Overall, our results highlight ZTO as a promising ETL for unleashing the potential of stable hysteresis-free perovskite solar cells, and the strategy of interface engineering should be further exploited in future to achieve better device performance.

Acknowledgement

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

Supporting Information

BET and the optical transmittance of the mesoporous ZTO layers, Transmittance and the SEM images of the CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ on meso-TiO$_2$, and the device performance, optical photographs of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$. This material is available free of charge via the Internet at http://pubs.acs.org.
References

Figure 1. (a) Crystal structure of the cubic spinel-structured ZTO. (b) Schematic of the band alignment between ZTO, CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$, and spiro-MeOTAD in the perovskite solar cell. The band structure of TiO$_2$ is also added for comparison. (c) XRD pattern of the mp-ZTO layer.
Figure 2. Evolution of crystallization and structure of the perovskite film on ZTO during annealing at 100 °C: (a) XRD patterns and (b) transmission spectra. Inset of (b) presents the transmittance spectra of mp-ZTO and mp-TiO₂ layers.
Figure 3. Surface morphology of the CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ layers on mp-ZTO after annealing at 100 °C for 30 minutes: (a) tapping-mode AFM height image (5 × 5 µm) and (b) top-view SEM image. (c) Cross-sectional view of the perovskite solar cell device with ZTO as ETL.
Figure 4. (a) $J-V$ curves of the perovskite solar cell with ZTO ETL measured in dark and under illumination. (b) EQE spectrum and the corresponding integrated current density of the same solar cell. (c) $J-V$ curves of the perovskite solar cell with the ZTO ETL measured in forward and reverse voltage scanning directions. Inset shows the typical hysteresis behavior of the $J-V$ curves of the perovskite solar cell with the mp-TiO$_2$ ETL. (d) Scan rate dependence of the $J-V$ characteristics of the perovskite solar cell with the ZTO ETL.
Figure 5. Normalized profiles of transient absorption for bilayers of CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$ with ZTO and TiO$_2$ ETLs measured at 440 nm excitation (1 kHz, 35 fs, 1.5 µJ/cm2).
Figure 6. (a) Time dependence of J_{SC} upon continuous AM 1.5 illumination measured on perovskite solar cells without encapsulation. (b) Variations of the photovoltaic parameters as a function of storage time in ambient atmosphere for the perovskite solar cell with ZTO ETL.
Fast Crystallization and improved Stability of Perovskite Solar Cells with Zn$_2$SnO$_4$ Electron Transporting Layer: Interface Matters

Ashok Bera†, Arif D. Sheikh†, Md. Azimul Haque†, Riya Bose†, Erkki Alarousu†, Omar F. Mohammed†, Tom Wu†,*

†Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
E-mail: tao.wu@kaust.edu.sa

†Solar and Photovoltaics Engineering Research Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia