THE KAUST Repository is an initiative of the University Library to expand the impact of conference papers, technical reports, peer-reviewed articles, preprints, theses, images, data sets, and other research-related works of King Abdullah University of Science and Technology (KAUST). 

Theses and DissertationsResearch Publications

Files in the repository are accessible through popular web search engines and are given persistent web addresses so links will not become broken over time.

KAUST researchers: To add your research to the repository, click on Deposit your Research, log in with your KAUST user name and password, and deposit the item in the appropriate collection.

Deposit your Research

If you have any questions, please contact

  • Natal philopatry increases relatedness within groups of coral reef cardinalfish

    Rueger, Theresa; Harrison, Hugo B.; Buston, Peter M.; Gardiner, Naomi M.; Berumen, Michael L.; Jones, G. P. (Proceedings of the Royal Society B: Biological Sciences, The Royal Society, 2020-07-08) [Article]
    A central issue in evolutionary ecology is how patterns of dispersal influence patterns of relatedness in populations. In terrestrial organisms, limited dispersal of offspring leads to groups of related individuals. By contrast, for most marine organisms, larval dispersal in open waters is thought to minimize kin associations within populations. However, recent molecular evidence and theoretical approaches have shown that limited dispersal, sibling cohesion and/or differential reproductive success can lead to kin association and elevated relatedness. Here, we tested the hypothesis that limited dispersal explains small-scale patterns of relatedness in the pajama cardinalfish Sphaeramia nematoptera. We used 19 microsatellite markers to assess parentage of 233 juveniles and pairwise relatedness among 527 individuals from 41 groups in Kimbe Bay, Papua New Guinea. Our findings support three predictions of the limited dispersal hypothesis: (i) elevated relatedness within groups, compared with among groups and elevated relatedness within reefs compared with among reefs; (ii) a weak negative correlation of relatedness with distance; (iii) more juveniles than would be expected by chance in the same group and the same reef as their parents. We provide the first example for natal philopatry at the group level causing small-scale patterns of genetic relatedness in a marine fish.
  • Interaction of Dust Aerosols with Land/Sea Breezes over the Eastern Coast of the Red Sea from LIDAR Data and High-resolution WRF-Chem Simulations

    Parajuli, Sagar P.; Stenchikov, Georgiy L.; Ukhov, Alexander; Shevchenko, Illia; Dubovik, Oleg; Lopatin, Anton (Submitted to Atmospheric Chemistry and Physics Discussions, Copernicus GmbH, 2020-07-08) [Preprint]
    With advances in modeling approaches and the application of satellite and ground-based data in dust-related research, our understanding of the dust cycle has significantly improved in recent decades. However, two aspects of the dust cycle, namely the vertical profiles and diurnal cycles, are not yet adequately understood, mainly due to the sparsity of direct observations. Measurements of backscattering caused by atmospheric aerosols have been ongoing since 2014 at the King Abdullah University of Science and Technology (KAUST) campus using a micro-pulse LIDAR with a high temporal resolution. KAUST is located on the east coast of the Red Sea (22.3° N, 39.1° E), and currently hosts the only operating LIDAR system in the Arabian Peninsula. We use the data from this LIDAR together with other collocated observations and high-resolution WRF-Chem model simulations to study the following aspects of aerosols, with a focus on dust over the Red Sea Arabian coastal plains. Firstly, we investigate the vertical profiles of aerosol extinction and concentration in terms of their seasonal and diurnal variability. Secondly, we evaluate how well the WRF-Chem model performs in representing the vertical distribution of aerosols over the study site. Thirdly, we explore the interactions between dust aerosols and land/sea breezes, which are the most influential components of the local diurnal circulation in the region. We found a substantial variation in the vertical profile of aerosols in different seasons. We also discovered a marked difference in the daytime and nighttime vertical distribution of aerosols at the study site, as revealed by the LIDAR data. The LIDAR data also identified a prominent dust layer at ∼5–7 km during the nighttime, which represented the long-range transported dust brought to the site by the easterly flow from remote inland deserts. The vertical profiles of aerosol extinction in different seasons were largely consistent between the LIDAR, MERRA-2 reanalysis, and CALIOP data, as well as in the WRF-Chem simulations. The sea breeze circulation was much deeper (∼2 km) than the land breeze circulation (∼1 km), but both breeze systems prominently affected the distribution of dust aerosols over the study site. We observed that sea breezes push the dust aerosols upwards along the western slope of the Sarawat Mountains, which eventually collide with the dust-laden northeasterly trade winds coming from nearby inland deserts, causing elevated dust maxima at a height of ∼1.5 km above sea level over the mountains. Moreover, the sea and land breezes intensified dust emissions from the coastal region during the daytime and nighttime, respectively. The WRF-Chem model successfully captured the onset, demise, and height of a large-scale dust event that occurred in 2015, compared to LIDAR data. Our study, although focused on a particular region, has broader environmental implications as it highlights how aerosols and dust emissions from the coastal plains can affect the Red Sea climate and marine habitats.
  • Chemoselective Hydrogenation of Alkynes to (Z)-Alkenes Using an Air-Stable Base Metal Catalyst

    Zubar, Viktoriia; Sklyaruk, Jan; Brzozowska, Aleksandra; Rueping, Magnus (Organic Letters, American Chemical Society (ACS), 2020-07-08) [Article]
    A highly selective hydrogenation of alkynes using an air-stable and readily available manganese catalyst has been achieved. The reaction proceeds under mild reaction conditions and tolerates various functional groups, resulting in (Z)-alkenes and allylic alcohols in high yields. Mechanistic experiments suggest that the reaction proceeds via a bifunctional activation involving metal–ligand cooperativity.
  • Seagrass losses since mid-20th century fuelled CO 2 emissions from soil carbon stocks

    Salinas, Cristian; Duarte, Carlos M.; Lavery, P. S.; Masqué, Pere; Arias-Ortiz, Ariane; Leon, Javier X.; Callaghan, David; Kendrick, G. A.; Serrano, Oscar (Global Change Biology, Wiley, 2020-07-07) [Article]
    Seagrass meadows store globally significant organic carbon (Corg) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication-driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg/m2) than previously vegetated counterparts (0.5 ± 0.1 kg Corg/m2). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg/m2, respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg m−2 year−1, respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06–0.14 Tg CO2-eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11–21 Tg CO2-eq since the 1950s, increasing cumulative CO2 emissions from land-use change in Australia by 1.1%–2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.
  • SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype.

    Yamamoto, Naoki; Ariumi, Yasuo; Nishida, Nao; Yamamoto, Rain; Bauer, Georg; Gojobori, Takashi; Shimotohno, Kunitada; Mizokami, Masashi (Gene, Elsevier BV, 2020-07-07) [Article]
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The relentless spread and pathogenicity of the virus have become a global public health emergency. One of the striking features of this pandemic is the pronounced impact on specific regions and ethnic groups. In particular, compared with East Asia, where the virus first emerged, SARS-CoV-2 has caused high rates of morbidity and mortality in Europe. This has not been experienced in past global viral infections, such as influenza, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and is unique to SARS-CoV-2. For this reason, we investigated the involvement of genetic factors associated with SARS-CoV-2 infection with a focus on angiotensin-converting enzyme (ACE)-related genes, because ACE2 is a receptor for SARS-CoV-2. We found that the ACE1 II genotype frequency in a population was significantly negatively correlated with the number of SARS-CoV-2 cases. Similarly, the ACE1 II genotype was negatively correlated with the number of deaths due to SARS-CoV-2 infection. These data suggest that the ACE1 II genotype may influence the prevalence and clinical outcome of COVID-19 and serve as a predictive marker for COVID-19 risk and severity.

View more